June 2020

2020 Momentum Newsletter
Product Update

NEW MATERIAL RELEASE

IN625-RAM2 superalloy with superior mechanical properties

C500Ed851B57D8851A2A89Bec45B65E2Be78D54F

We develop RAM (Reactive Additive Manufacturing) technology for a wide variety of advanced materials. We are excited to introduce IN625-RAM2, our first of many nickel alloys being released in H1, 2020. IN625-RAM2 is a nickel superalloy MMC (Metal Matrix Composite) developed for additive manufacturing (AM) applications requiring the highest available mechanical strength and creep resistance at high temperatures. Our patented RAM technology also induces high hardness, wear, and surface stability.

IN625-RAM2  superalloy MMC exhibits a 120% increase over the cold-rolled base alloy and has a 72% higher yield strength at an operating temperature of 800°C. Even with these significant strength increases, the RAM-produced superalloy also exhibits good ductility, with room-temperature elongations greater than 20% and greater than 40% at 800°C.

The quality of RAM-produced nickel superalloy MMCs is evident in two ways. First, the distinct reduction in microstructural defects, including reduced porosity and reduced microcracking compared to the non-MMC base alloy produced by the laser powder bed fusion (L-PBF) process. Second, through our proven material production and processing methods. Statistically reliable data was used to develop processing conditions on the EOS M290 AM printer and other commercial AM equipment, including larger-scale platforms.

IN625-RAM2 is intended for industries that benefit from increased high-temperature strength, hot-engine efficiency, and corrosion resistance. Targeted industries include aerospace and power industry applications such as turbine blades and jet/rocket engines, industrial gas turbines, heat exchangers, and nuclear components.


Powder production capacity super-sized

733D8277783B366Cae601931E5E14Ce889536Ba1

The installation of our newest manufacturing equipment, a 41,472-cubic-inch industrial powder mixer, will significantly increase our material production capacity. Mixing up to one ton of material per day enables us to supply even more customers with on-demand products and builds upon our commitment to quality, reliability, and efficiency.

We chose the Lancaster K4 mixer as the perfect solution for large-scale powdered material preparation. The mixing action accurately blends our powders homogeneously. Installation and testing will be complete by the end of July.  

WATCH VIDEO

C8F8E0B50E8Aa19Cf5Bab52122B79742D62A8B2C

WHITE PAPER: Powder recycling in laser powder bed fusion: Improving processing, maintaining quality

7447737Ef2F88Ee20112Bb02631Af7655A6Ada5B

At Elementum 3D, we aim to provide a quality product with our customers’ interests and needs in mind. The introduction of our Reactive Additive Manufacturing (RAM) technology has allowed for a wide variety of materials systems that have not been printable by laser powder bed fusion (L-PBF) to now be commercially available.

Along with bringing new materials to the market the RAM technology has shown to have equivalent and improved mechanical properties when compared to traditional wrought alloys. This technology utilizes micron-scale additives blended into our powder feedstock that react in situ during printing to form sub-micron inoculants. These inoculants lead to grain refinement and contribute to the elimination of defects like hot tearing in aluminum, a hurdle for many alloys in AM.

Our uniquely designed alloy feedstock for laser powder bed fusion (L-PBF) has been found to generate light weight, high strength, AM parts. With these specialty powders an area of interest for many consumers is the utilization of powder for multiple builds, or powder recycling. To consider this possibility with our material, studies were performed on three of our different RAM materials.

Benefits and Challenges of Powder Recycling

Powder recycling is both economically and environmentally beneficial, as it increases the amount of builds performed with the same feed stock, as well as reduces the amount of material wasted per build. Additionally, powder processing allows for blending of multiple components, for production of materials like …  FULL WHITE PAPER

Team News

ISO 9001:2015 Certified

On April 24, 2020, Elementum 3D achieved ISO 9001:2015 certification for quality management.

The scope of Elementum 3D’s certification, issued through Denver-based ISO 9001 management certification firm Platinum Registration, Inc., includes the design and manufacture of advanced metals, composites and ceramics; development of new manufacturing processes; and the manufacture of prototype and production parts to customer specifications and beyond.

“This is an important milestone for Elementum 3D,” said Dr. Jacob Nuechterlein, Elementum 3D president and founder, “It’s a rigorous process to become ISO 9001:2015 certified. Our staff worked very hard with Platinum Registration’s auditors to demonstrate we meet the requirements of the standard. Not only does that make us feel confident we’re the most efficient that we can be, it assures our customers that we have a completely transparent and robust management system; and that means we have reliable, repeatable, continuously improving business processes so that our customers receive the best value for their money.”

2D85606Fe5A0B16B977C568F584Bf52Fba153939

Employee update

As Elementum 3D builds momentum, so has our need to grow our amazing team. Placing team members in positions fitting their unique talents and expertise has made it possible to grow our materials deliveries while continuing to introduce new and innovative products and services.

PROMOTIONS

Elementum 3D Staff Updates

Julian Aguilar – Additive Manufacturing Engineer I

Nathan Jantzen – Mechanical Engineer I

NEW HIRES

Scott Gordon – Welding Metallurgical Engineer

James Holmyard – AM Technician

Martine Iten – Security Administrator

Jana Welsh – Accounting Manager

Am Industry News

Momentum Newsletter

Jamie Perozzi

VP of Technology 6K Additive

Mr. Perozzi has 20+ years of specialty metals experience with a focus on process, new product development, product management, and application engineering. Before joining 6K, Perozzi spent seven years at AMETEK Specialty Metal Products responsible for quality and process engineering. Prior to Ametek, he spent 10 years at Hitachi Metals – Metglas and 3 years at J&L Specialty Steel. Perozzi holds a BS Metallurgical Engineering degree from Penn State University.

Dr. Timothy Smith

Materials Research Engineer NASA Glenn Research Center

Tim Smith graduated with a PhD in materials science and engineering from Ohio State University in 2016. After graduating, his pathways internship at NASA Glenn research center became a full-time position. His research focuses on high temperature alloy development and characterization. He has contributed to 29 peer-reviewed publications including journals in Nature Communications and Nature Communications Materials. His research has also produced 10 new technology reports and 3 utility patents. He recently received both the Early Career Achievement Medal in 2020 and the Exceptional Scientific Achievement Medal in 2022.

Dr. Douglas Hoffman

Senior Research Scientist (SRS)/ Principal Section Technologist NASA Jet Propulsion Laboratory

Dr. Douglas Hofmann is a Senior Research Scientist and Principal at NASA’s Jet Propulsion Laboratory, where he serves as the Section Technologist for the Mechanical Fabrication and Test Section. He is also a Lecturer and Visiting Associate at Caltech in the Applied Physics and Materials Science Department. Dr. Hofmann founded JPL’s Metallurgy Facility in 2010, was a charter member of the Materials Development and Manufacturing Technology Group, and helped establish the JPL Additive Manufacturing Center. He is the Principal Investigator of the NASA FAMIS Flight Experiment and was a 2012 recipient of the Presidential Early Career Award for Scientists and Engineers from President Obama. He has spent more than 12 years working in metal additive manufacturing and has over 30 granted patents and over 60 peer-reviewed publications.

Dr. Jacob Nuechterlein

President/Founder Elementum 3D

Dr. Jacob Nuechterlein is the founder and president of Elementum 3D in Erie, CO. He earned his Bachelor of Engineering, Master of Science, and Doctor of Philosophy at the Colorado School of Mines. Jacob has been researching, teaching, or consulting on topics such as casting and powder metallurgy for the last 14 years. Elementum 3D’s work with powder bed laser additive manufacturing is based on these principles. In addition, is thesis work in thermodynamics and formation kinetics of metal matrix composites is directly related to all 3D printing processes.